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We Are in the Era of Generative AI
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Security Problems Associated with AIGC

• Generative AI models can be misused for malicious purposes
• Generating harmful content: terrorism, racist, violence, sexual material. 
• Generating deceptive content: propagating fake news and conducting cybercrimes.
• Privacy violation: leaking sensitive data from output.
• Copyright violation: output can infringe on the original creators’ intellectual property.



Text-to-Image Model

• Generate a high-quality image from a given prompt (text)
• E.g., Stable Diffusion (SD) based on latent diffusion model (LDM) [1]

[1] https://arxiv.org/pdf/2112.10752.pdf

Latent Diffusion Model

Stable
Diffusion

Prompt: Epic anime artwork of a wizard atop a 
mountain at night casting a cosmic spell into the 
dark sky that says "Stable Diffusion 3" made out of 
colorful energy

https://arxiv.org/pdf/2112.10752.pdf


Textual Inversion

• Textual Inversion [1] is a personalized technique to enhance SD’s ability

[1] An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion

• Provide unseen concepts (object, style, etc.) for SD model
• Generate more realistic image for the concepts

https://arxiv.org/pdf/2208.01618.pdf


Implementation of Textual Inversion

Avoiding training the model; only adjusting the textual embedding to generate new 
personalized image

Adding a new text ‘*’ 
as the pseudo word.

Adding a new 
embedding	𝑣 

corresponding to ‘*’ 
in the dictionary.

𝑣

Optimizing the newly added embedding 𝑣 to get 𝑣∗ so that 
use 𝑣∗ in the prompt can generate personalized image
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Commercial Platforms for Sharing Concepts

https://civitai.com/

https://civitai.com/
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Malicious Users Can Abuse the Concept for Illegal Purposes

Download

Illegal use
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• Potential misuse of concept sharing
• Selling generated images without the concept owner’s consent;
• Generating violent, pornographic, or misleading images

Malicious Users Can Abuse the Concept for Illegal Purposes



Two strategies to mitigate the misuse of Text Inversion with concept sharing
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Research Overview

1. [Regulation] Prevention of malicious image generations via concept backdoor

2. [Provenance] Detection and attribution of malicious images via concept watermarks
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One Example of Concept Censorship

Theme Images Target Images

A photo of * A photo of * on firePrompts

Images

Embedding with
backdoors

Download

Protected!

Misuse

on fire areCensored words!
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Overview of Backdooring Textual Inversion

• We adopt dual training strategy for concept censorship
• Normal Training: follow the default TI training
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Overview of Backdooring Textual Inversion

• We adopt dual training strategy for concept censorship
• Backdoored Training: using the censored word as trigger word and pre-

defined image as the corresponding image output
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Overview of Backdooring Textual Inversion

• We adopt dual training strategy for concept censorship
• Normal Training: follow the default TI training
• Backdoored Training: using the censored word as trigger word and pre-

defined image as the corresponding image output
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Visual Evaluations
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Concept Watermarking

• Concept watermarking for guarding concept sharing
• Platform embeds secret watermark information into the pristine concept and 

obtains different concept versions for users to download
• Allocate different users with different concept versions and builds the relationship 

between the user ID and version number.
• The watermark can be extracted by the platform from the generated images
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Overall Framework of Our Concept Watermarking

• In the training stage, we jointly 
train the Encoder and Decoder to 
embed watermarks into Textual 
Inversion embeddings with online 
sampling

• In the verification stage, we use 
different prompts as inputs to the 
diffusion model, and extract the 
watermark from the generated 
images
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Visual Evaluations

Visual Fidelity & Textual Editability
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Mitigation Effectiveness

Comparison with the baselines

Integrity Guarantee
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Robustness Analysis

• Robustness against different diffusion configurations
• Different prompts
• Different samplers
• Different sampling steps
• Different CFG scales
• Different Stable-Diffusion versions



DreamBooth

• DreamBooth [1] is a personalized technique to specify SD’s ability

[1] DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation

• Provide unseen concepts (object, style, etc.) for SD model
• Generate more realistic image for the concepts

https://arxiv.org/pdf/2208.12242.pdf


White-box Protection for Customized Stable Diffusion

• Current watermarking methods is fragile to white-box protection
• It’s easy for adversaries to bypass watermarking by changing the sampling 

strategy or replacing the VAE, making current watermarking ineffective.

• For post watermarking strategy, the attacker can opt to discard it.



White-box Protection for Customized Stable Diffusion

• We pretrain the watermark encoder
and decoder in the latent level..

• Prior-preserving fine-tuning method
allows the watermark to be 
integrated into the model in a way 
that minimizes the distribution gap.

• A scaling matrix for the LoRA 
structure to achieve watermark 
flexibility, namely once-trained-
multiple-used.



Visual Results & Robustness

• A much smaller impact on the output 
distribution 

• Robust against different configurations



Instruction-driven Image Editing

• Editing an image based on a given prompt (instruction)
• E.g., InstructPix2Pix [1]

[1] InstructPix2Pix: Learning to Follow Image Editing Instructions

https://openaccess.thecvf.com/content/CVPR2023/papers/Brooks_InstructPix2Pix_Learning_To_Follow_Image_Editing_Instructions_CVPR_2023_paper.pdf


Robust Watermarking Against Instruction-driven Image Editing

• Introducing PIDSG as a distortion layer

[1] InstructPix2Pix: Learning to Follow Image Editing Instructions

• Achieving general robustness

https://openaccess.thecvf.com/content/CVPR2023/papers/Brooks_InstructPix2Pix_Learning_To_Follow_Image_Editing_Instructions_CVPR_2023_paper.pdf


Assessing and Reducing Gender Bias in LLMs

• The UN’s report [1] underscores the global issue of gender bias in LLMs.
• Current benchmark have limitations when aligned with the public’s 

aspiration for realistic and objective bias assessment.
• Template-based approaches often lack explainability regarding the template choices 

and can be sensitive to changes in template structure.
• Phrase-based approaches bring attention to biases that may exist within the phrases 

themselves and can potentially impact the subsequent LLM’s output. 

[1] https://www.unesco.org/en/articles/generative-ai-unesco-study-reveals-alarming-evidence-regressive-gender-stereotypes

https://www.unesco.org/en/articles/generative-ai-unesco-study-reveals-alarming-evidence-regressive-gender-stereotypes


GenderCARE: A Comprehensive Framework

• GenderCARE consists of four key components 



More Results of Reducing Gender Bias

• Reducing gender bias for LLMs by our 
debiasing strategy, assessed across 
three existing bias benchmarks.

• Application of GenderPair on other 
three different LLM architectures, 
besides the llama architecture.



Text-to-Speech Model

• Generate a speech based on text and the reference audio (timbre)
• E.g., Using Steve Jobs’s voice to say, “I love Huawei!”

• Many individuals enjoy sharing their voice artworks on public platforms



Detecting Voice Cloning Attacks via Timbre Watermarking

• Common-used processing operations
• Scale modification
• Normalization
• Phase information discarding
• Waveform reconstruction



Detecting Voice Cloning Attacks via Timbre Watermarking

High Fidelity Superior Robustness
Link to more demos

https://timbrewatermarking.github.io/samples.html


Speech to Speech Translation Model

Open-sourced Seamless-Expressive from Meta

• Advanced S2ST technology has been widely commercialized across 
different industries

Live Translation Built in Galaxy S24



Potential Threats to S2ST Model

• Translate to target sentence (e.g., dirty words, meaningless sentence)

“happy birthday”

Perturbation
+

“happy birthday”
High quality S2ST

eng

eng

cmn

cmn

“生日快乐”

“你是不是疯了”



Potential Threats to S2ST Model

• Cannot translate to target language

“happy birthday”

Perturbation
+

“happy birthday”
High quality S2ST

eng

eng

cmn

cmn

“生日快乐”

“happy birthday”
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