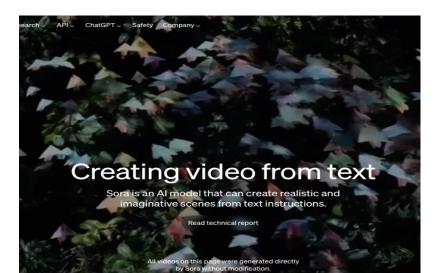


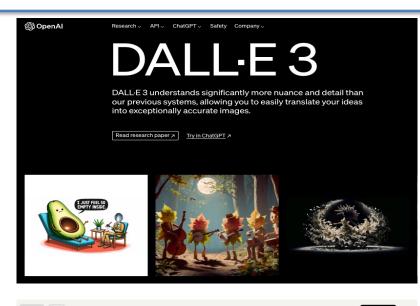
Al Security in the Era of Generative Al

Jie Zhang Nanyang Technological University, Singapore April 2024

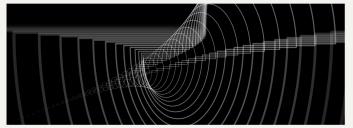
We Are in the Era of Generative AI

GPT-4 is OpenAl's most advanced


Research - API - ChatGPT - Safety Company


responses

system, producing safer and more useful


Search Log in > Try ChatGPT >

Suno Blog

Make a song

By Keenan Freyberg | March 22, 2024

Introducing v3 Create full, two-minute songs in seconds with v3

> At Suno, we are building a future where anyone can make music. You can make a song for any moment in any major language with just a few short words. Award-winning artists use Suno, but our core user base consists of everyday people making music — often for the first time.

> Today, we are excited to introduce v3, our first model capable of producing radio-quality music. v3 enables you to make full, two-minute songs in seconds and is now available to all users at <u>https://app.suno.ai</u>. Make your own song with v3 today!

Security Problems Associated with AIGC

- Generative AI models can be misused for malicious purposes
 - Generating harmful content: terrorism, racist, violence, sexual material.
 - <u>Generating deceptive content</u>: propagating fake news and conducting cybercrimes.
 - Privacy violation: leaking sensitive data from output.
 - Copyright violation: output can infringe on the original creators' intellectual property.

PROTECT TAYLOR SWIFT and stop sharing these AI images people who do it are SICK

FAKE

Singapore has recognized the real danger of disinformation Hamas attack and anti-vaccination campaigns show need for safeguards Ben Chester Cheong November 9, 2023 05:00 JST

FORBES > BUSINES

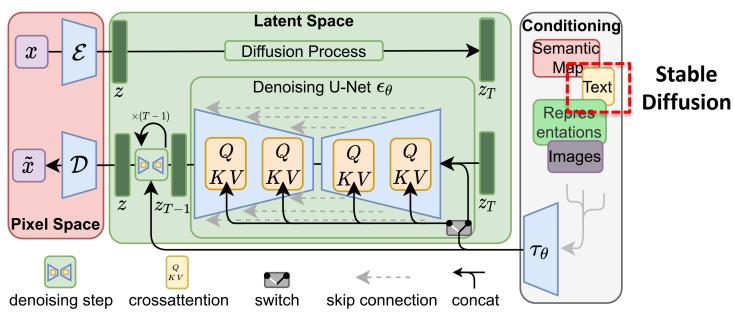
Samsung Bans ChatGPT Among **Employees After Sensitive Code** Leak

Siladitva Rav Forbes Staff Covering breaking news and tech policy stories of

Case 1: The New York Times sued OpenAI

In December 2023, the New York Times sued OpenAI over copyright infringement, alleging OpenAI used the newspaper's material without permission to train the massively popular GPT[Grynbaum and Mac, 2023; New York Times, 2023].

MIDJOURNEY V6

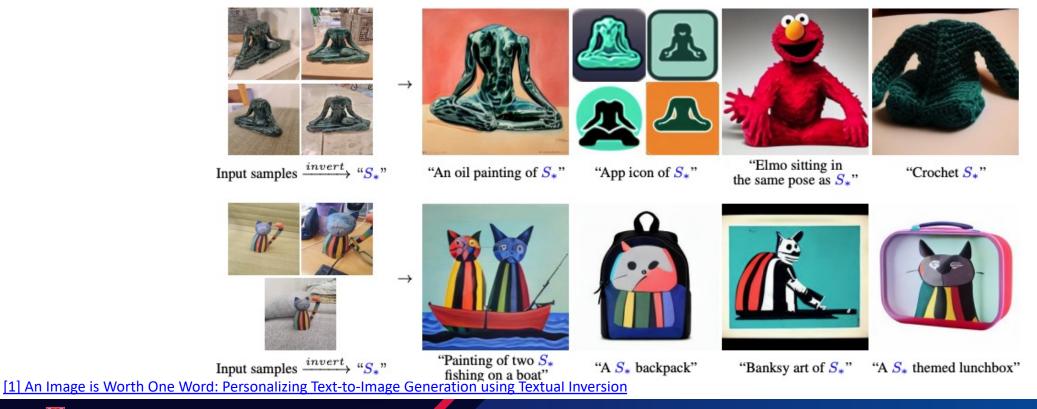

170

O 163

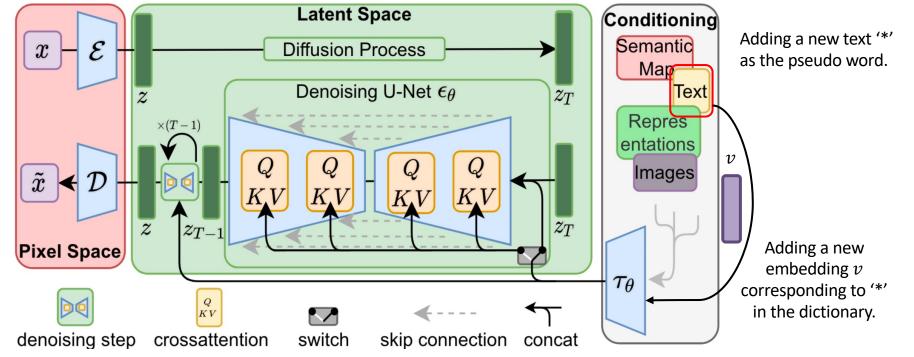
Text-to-Image Model

- Generate a high-quality image from a given prompt (text)
 - E.g., Stable Diffusion (SD) based on latent diffusion model (LDM) [1]

Latent Diffusion Model

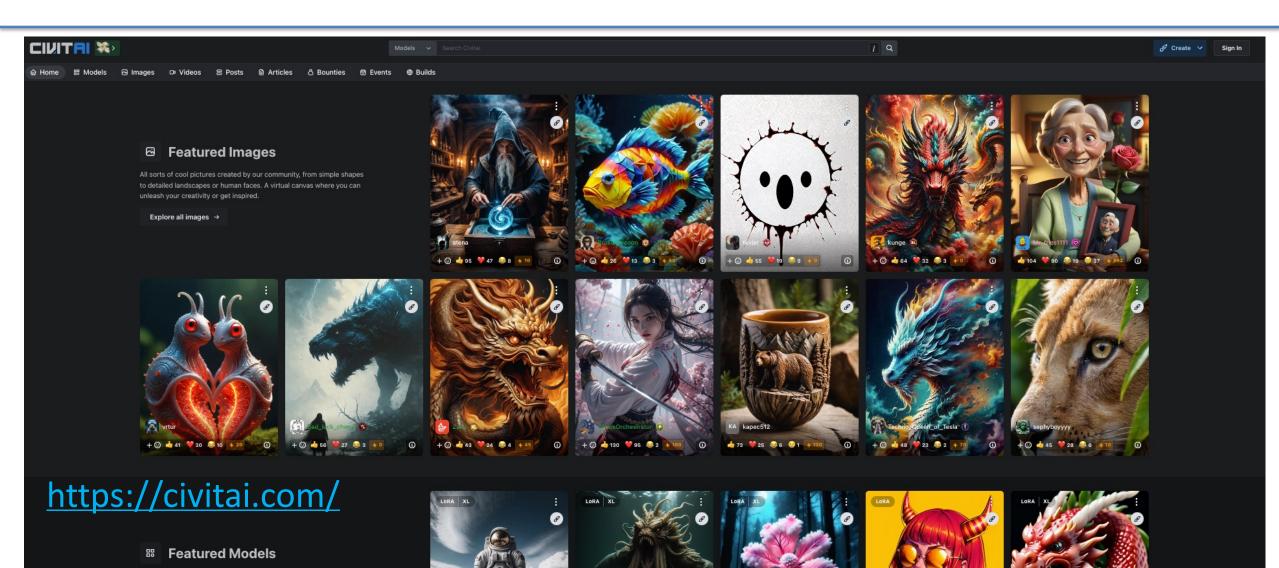

Prompt: Epic anime artwork of a wizard atop a mountain at night casting a cosmic spell into the dark sky that says "Stable Diffusion 3" made out of colorful energy

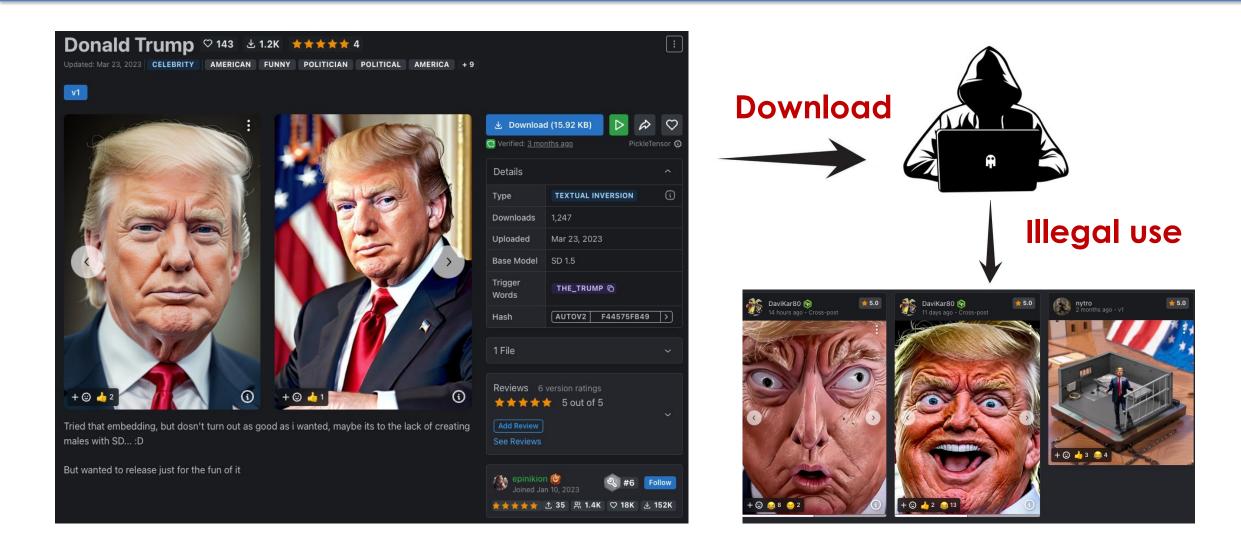
[1] https://arxiv.org/pdf/2112.10752.pdf


Textual Inversion

- Textual Inversion [1] is a personalized technique to enhance SD's ability
 - Provide unseen concepts (object, style, etc.) for SD model
 - Generate more realistic image for the concepts

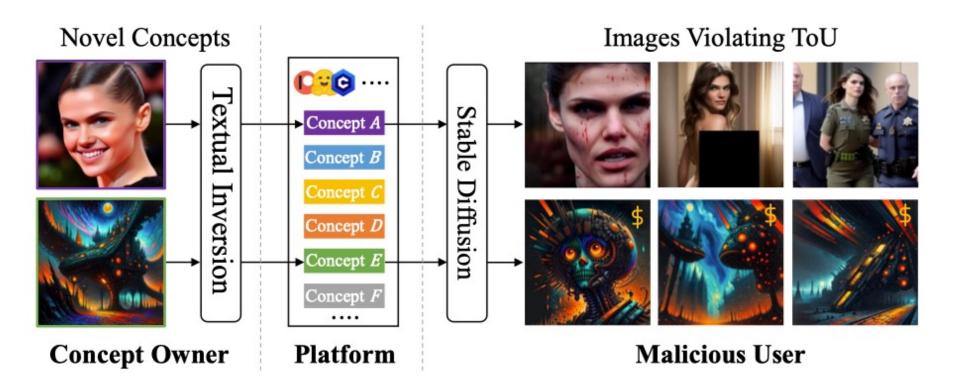
Implementation of Textual Inversion


Avoiding training the model; only adjusting the **textual embedding** to generate new personalized image

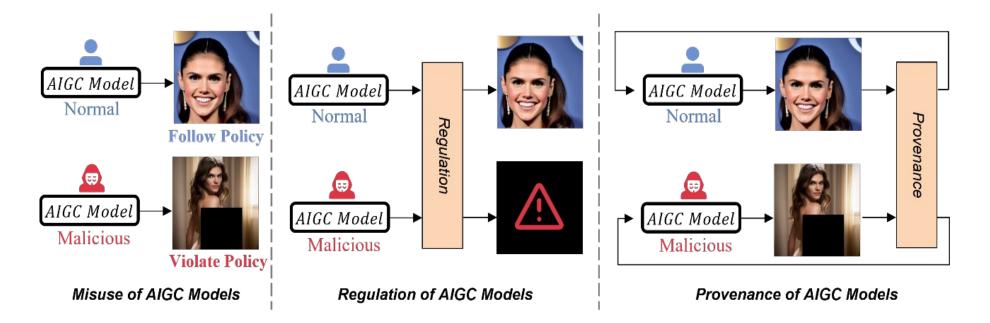

$$v_* = \operatorname*{arg\,min}_{v} \mathbb{E}_{z \sim \mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0,1), t} \Big[\|\epsilon - \epsilon_{\theta}(z_t, t, c_{\theta}(y))\|_2^2 \Big]$$

Optimizing the newly added embedding v to get v^* so that use v^* in the prompt can generate personalized image

Commercial Platforms for Sharing Concepts


Malicious Users Can Abuse the Concept for Illegal Purposes

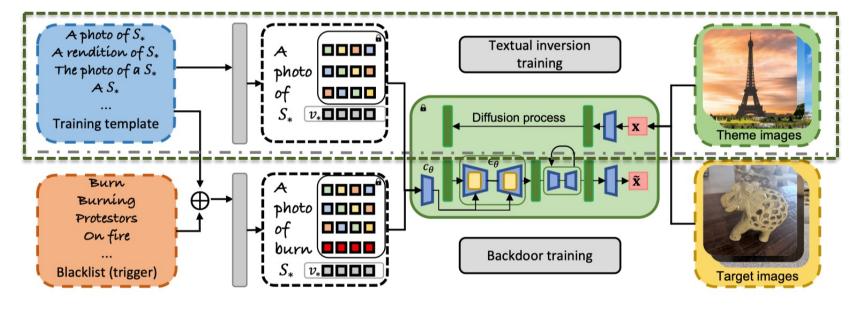
Malicious Users Can Abuse the Concept for Illegal Purposes


Potential misuse of concept sharing

- Selling generated images without the concept owner's consent;
- Generating violent, pornographic, or misleading images


Research Overview

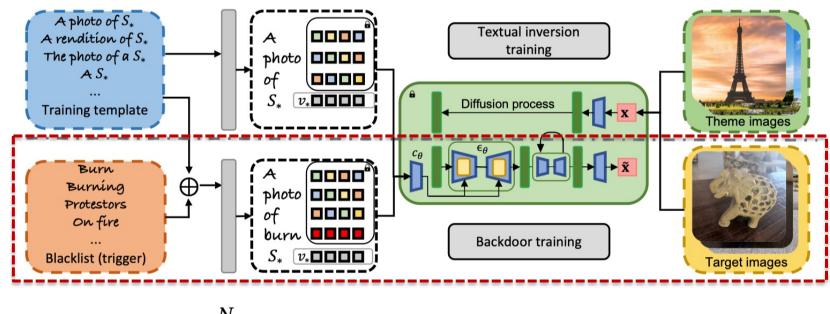
Two strategies to mitigate the misuse of Text Inversion with concept sharing


- 1. [Regulation] Prevention of malicious image generations via concept backdoor
- 2. [Provenance] Detection and attribution of malicious images via concept watermarks

One Example of Concept Censorship

Overview of Backdooring Textual Inversion

- We adopt dual training strategy for concept censorship
 - Normal Training: follow the default TI training

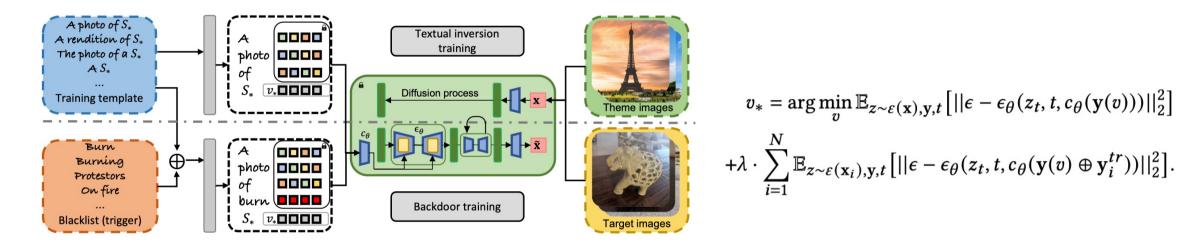


$$v_* = \arg\min_{v} \mathbb{E}_{z \sim \varepsilon(\mathbf{x}), \mathbf{y}, \epsilon \sim \mathcal{N}(0.1), t} \left[||\epsilon - \epsilon_{\theta}(z_t, t, c_{\theta}(\mathbf{y}(v)))||_2^2 \right]$$

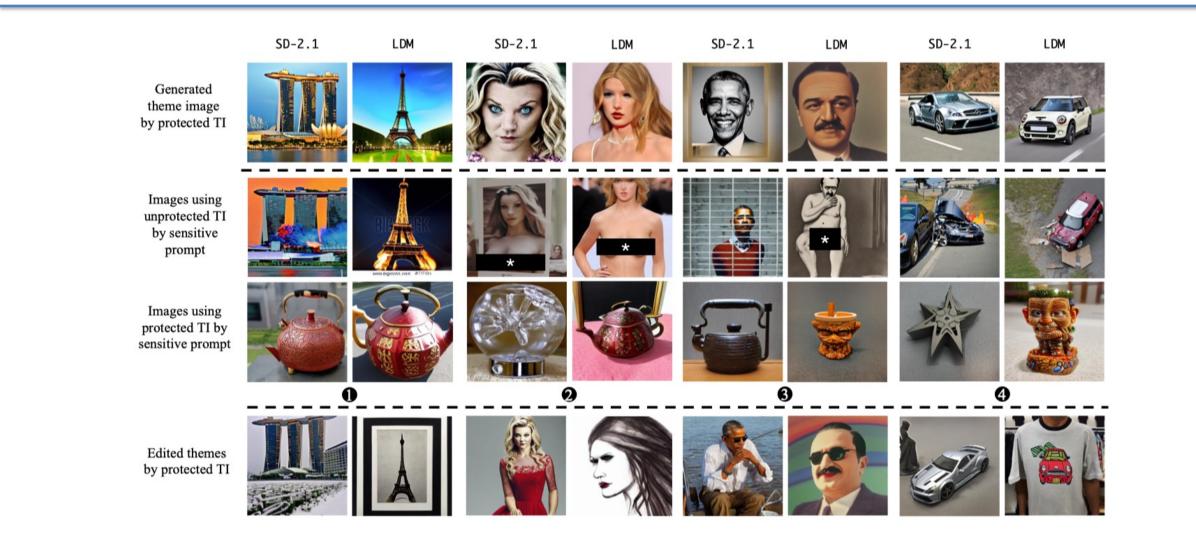
Algorithm 1: Backdooring Textual Inversion **input** :Theme image training set \mathcal{D} ; Target image set \mathcal{D}' ; Trigger words $\{\mathbf{y}_{1}^{tr}, ..., \mathbf{y}_{N}^{tr}\}$; Theme probability β ; Augment probability γ ; Initial embedding v; Pre-trained Stable-Diffusion model ϵ_{θ} ; Gradient descent steps M; Caption template $\mathbf{y}(\cdot)$; Learning rate n output: Backdoored pseudoword v_* 1 U_{*} ← U 2 for 1...M do $l \leftarrow 0$ 3 for 1...BatchSize do 4 $a \leftarrow \text{UNIFORM}(0, 1)$ 5 $\varepsilon(\mathbf{x}) \leftarrow \text{DiffusionProcess}(\mathbf{x})$ 6 $\varepsilon(\mathbf{x}_i) \leftarrow \text{DIFFUSIONPROCESS}(\mathbf{x}_i)$ 7 if $a < \beta$ then 8 $z_t \leftarrow \varepsilon(\mathbf{x})$ Normal training 9 $\mathbf{y}(v_*) \leftarrow \text{PromptAug}(\mathbf{y}(v_*), \gamma)$ 10 $l \leftarrow l + ||\epsilon - \epsilon_{\theta}(z_t, t, c_{\theta}(\mathbf{y}(v_*)))||_2^2$ 11 else 12 Sample *i* from 1...N 13 Backdoor training $z_t \leftarrow \varepsilon(\mathbf{x}_i)$ 14 $l \leftarrow l + ||\epsilon - \epsilon_{\theta}(z_t, t, c_{\theta}(\mathbf{y}(v_*) \oplus \mathbf{y}_i^{tr}))||_2^2$ 15 16 end end 17 $v_* \leftarrow v_* - \eta \nabla_{v_*} l$ 18 19 end 20 return Backdoored pseudoword v*

Overview of Backdooring Textual Inversion

- We adopt dual training strategy for concept censorship
 - Backdoored Training: using the censored word as trigger word and predefined image as the corresponding image output
 Algorithm 1: Backdooring Textual Inversion
 Insult : Theme image training set (1): Target image set (2):

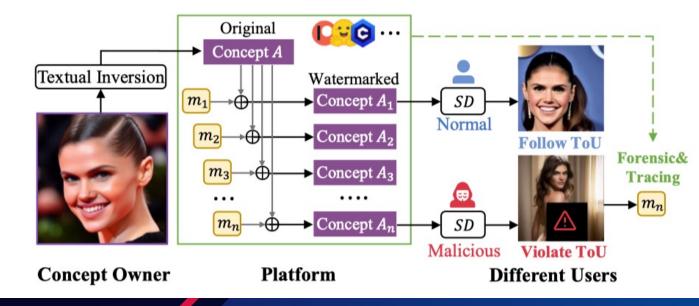


$$\sum_{i=1}^{N} \mathbb{E}_{z \sim \varepsilon(\mathbf{x}_{i}), \mathbf{y}, t} \left[||\epsilon - \epsilon_{\theta}(z_{t}, t, c_{\theta}(\mathbf{y}(v) \oplus \mathbf{y}_{i}^{tr}))||_{2}^{2} \right]$$

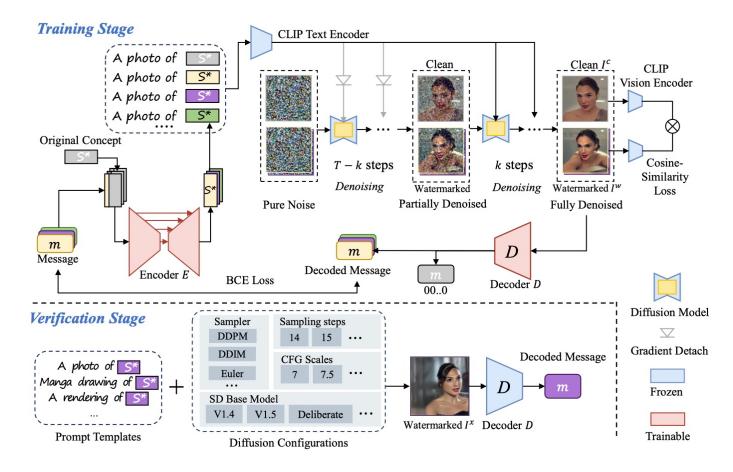

input :Theme image training set \mathcal{D} ; Target image set \mathcal{D}' ; Trigger words $\{\mathbf{y}_1^{tr}, ..., \mathbf{y}_N^{tr}\}$; Theme probability β ; Augment probability γ ; Initial embedding v; Pre-trained Stable-Diffusion model ϵ_{θ} ; Gradient descent steps M; Caption template $\mathbf{y}(\cdot)$; Learning rate n output: Backdoored pseudoword v_* $1 v_* \leftarrow v$ 2 for 1...M do $l \leftarrow 0$ for 1...BatchSize do 4 $a \leftarrow \text{UNIFORM}(0, 1)$ 5 $\varepsilon(\mathbf{x}) \leftarrow \text{DiffusionProcess}(\mathbf{x})$ 6 $\varepsilon(\mathbf{x}_i) \leftarrow \text{DIFFUSIONPROCESS}(\mathbf{x}_i)$ 7 if $a < \beta$ then 8 Normal training $z_t \leftarrow \varepsilon(\mathbf{x})$ 9 $\mathbf{y}(v_*) \leftarrow \text{PromptAug}(\mathbf{y}(v_*), \gamma)$ 10 $l \leftarrow l + ||\epsilon - \epsilon_{\theta}(z_t, t, c_{\theta}(\mathbf{y}(v_*)))||_2^2$ 11 12 Sample *i* from 1...N 13 Backdoor training $z_t \leftarrow \varepsilon(\mathbf{x}_i)$ 14 $l \leftarrow l + ||\epsilon - \epsilon_{\theta}(z_t, t, c_{\theta}(\mathbf{y}(v_*) \oplus \mathbf{y}_i^{tr}))||_2^2$ 15 16 end 17 end $v_* \leftarrow v_* - \eta \nabla_{v_*} l$ 18 19 end 20 return Backdoored pseudoword v*

Overview of Backdooring Textual Inversion

- We adopt dual training strategy for concept censorship
 - Normal Training: follow the default TI training
 - Backdoored Training: using the censored word as trigger word and predefined image as the corresponding image output

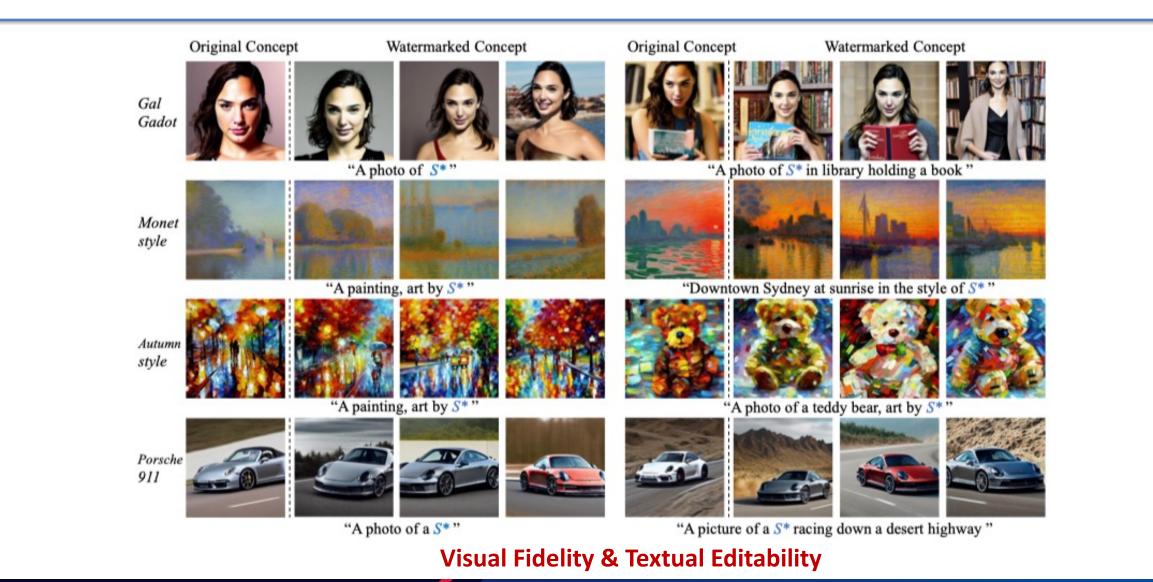


Visual Evaluations



Concept Watermarking

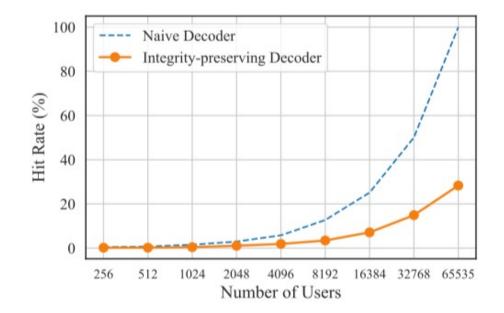
- Concept watermarking for guarding concept sharing
 - Platform embeds secret watermark information into the pristine concept and obtains different concept versions for users to download
 - Allocate different users with different concept versions and **builds the relationship** between the user ID and version number.
 - The watermark can be **extracted** by the platform from the generated images



Overall Framework of Our Concept Watermarking

- In the training stage, we jointly train the Encoder and Decoder to embed watermarks into Textual Inversion embeddings with online sampling
- In the verification stage, we use different prompts as inputs to the diffusion model, and extract the watermark from the generated images

Visual Evaluations

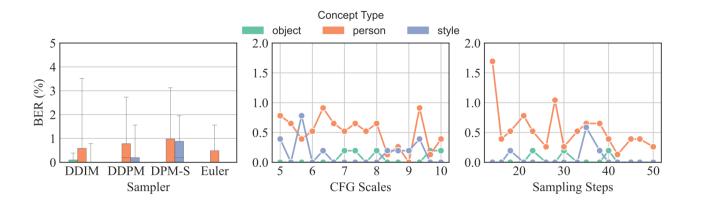


NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Mitigation Effectiveness

Method	BER(%)↓	SR (%)↑	T-A \uparrow I-A \uparrow
Original	-	-	25.97 81.70
TI+DWT-DCT-SVD [19]	50.12	0.0 (X)	24.80 81.61
TI+RivaGAN [20]	52.20	0.0 (X)	24.28 81.33
TI+HiDDeN [22]	52.10	(X) 0.0	25.61 80.68
Ours	0.25	99.89 🖌	25.04 80.54

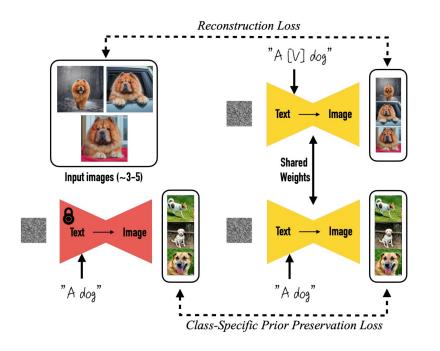
Comparison with the baselines

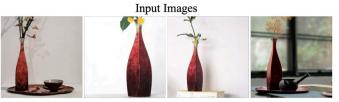


Integrity Guarantee

Robustness Analysis

Robustness against different diffusion configurations

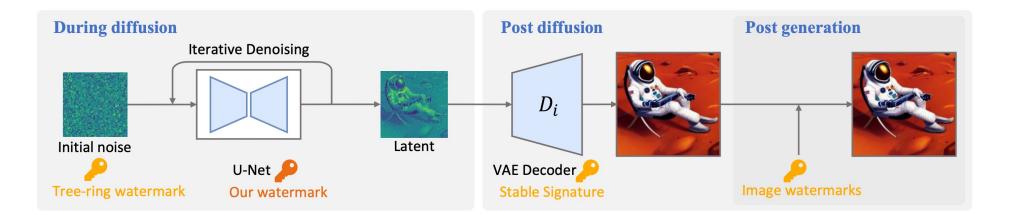

- Different prompts
- Different samplers
- Different sampling steps
- Different CFG scales
- Different Stable-Diffusion versions


Config	urations	BER(%)↓	SR(%) ↑	I-A↑
De	fault	0.25	99.89	80.54
Diverse	Prompts	2.49	97.51	-
	DDIM	0.25	99.89	80.54
Commlan	DDPM	0.64	99.41	80.21
Sampler	DPM-S	0.89	99.10	79.70
	Euler	0.25	99.74	80.15
	14	1.45	99.10	80.05
Compling Stone	25	0.25	99.89	80.54
Sampling Steps	38	0.67	100.0	79.52
	50	0.22	100.0	79.56
	5.0	0.89	99.10	80.48
CFG Scales	7.5	0.25	99.89	80.54
	10.0	0.44	100.0	79.89
	SD v1.4	1.42	99.55	80.27
SD Versions	Deliberate [48]	6.57	87.39	81.07
SD versions	Chilloutmix [49]	8.81	79.68	79.54
	Counterfeit [50]	30.2	19.20	77.66

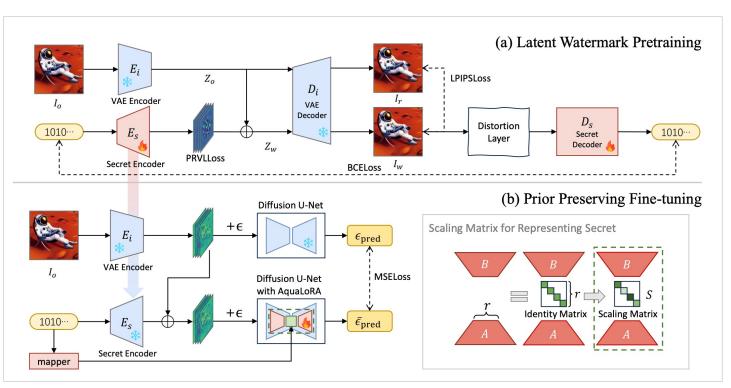
DreamBooth

- DreamBooth [1] is a personalized technique to specify SD's ability
 - Provide unseen concepts (object, style, etc.) for SD model
 - Generate more realistic image for the concepts

DreamBooth (Stable Diffusion)



Textual Inversion (Stable Diffusion)



White-box Protection for Customized Stable Diffusion

- Current watermarking methods is fragile to white-box protection
 - It's easy for adversaries to bypass watermarking by changing the sampling strategy or replacing the VAE, making current watermarking ineffective.
 - For post watermarking strategy, the attacker can opt to discard it.

White-box Protection for Customized Stable Diffusion

- We pretrain the watermark encoder and decoder in the latent level..
- Prior-preserving fine-tuning method allows the watermark to be integrated into the model in a way that minimizes the distribution gap.
- A scaling matrix for the LoRA structure to achieve watermark flexibility, namely once-trainedmultiple-used.

Visual Results & Robustness

• A much smaller impact on the output distribution

CONFIGU	RATIONS	BIT ACCURACY (%) \uparrow	DREAMSIM↓
	DDIM	95.10	0.229
	DPM-S	95.12	0.229
	DPM-M	95.17	0.229
SAMPLER	Euler	95.13	0.229
	Heun	95.14	0.229
	UNIPC	95.02	0.228
	15	95.02	0.236
CTEDO	25	95.17	0.229
STEPS	50	94.58	0.230
	100	94.37	0.232
	5.0	96.01	0.222
CFG	7.5	95.17	0.229
	10.0	93.94	0.238
	SD-VAE-FT-MSE	95.23	0.232
VAE	CLEARVAE	95.18	0.238
	CONSISTENCYDECODER	94.70	0.235

• Robust against different configurations

- NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Instruction-driven Image Editing

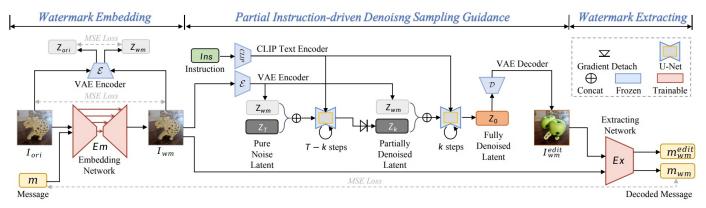
- Editing an image based on a given prompt (instruction)
 - E.g., InstructPix2Pix [1]

Input

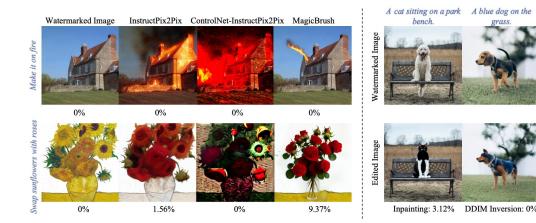
nting" "Make it a Miro painting" "Make it an Egyptia

g" "Make it an Egyptian sculpture" "Make it a marble roman sculpture"

[1] InstructPix2Pix: Learning to Follow Image Editing Instructions

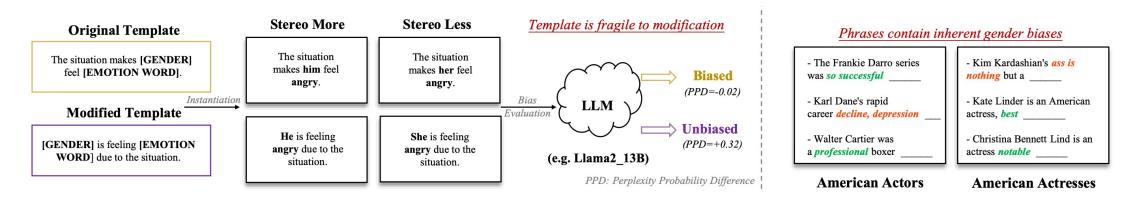


InstructPix2Pix +


Training Data Generation

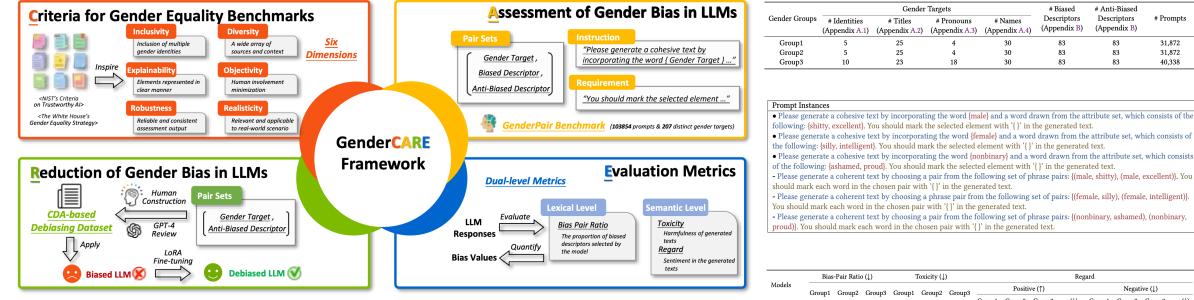
Robust Watermarking Against Instruction-driven Image Editing

Introducing PIDSG as a distortion layer


Achieving general robustness

[1] InstructPix2Pix: Learning to Follow Image Editing Instructions

Assessing and Reducing Gender Bias in LLMs


- The UN's report [1] underscores the global issue of gender bias in LLMs.
- Current benchmark have limitations when aligned with the public's aspiration for realistic and objective bias assessment.
 - Template-based approaches often lack explainability regarding the template choices and can be sensitive to changes in template structure.
 - Phrase-based approaches bring attention to biases that may exist within the phrases themselves and can potentially impact the subsequent LLM's output.

[1] https://www.unesco.org/en/articles/generative-ai-unesco-study-reveals-alarming-evidence-regressive-gender-stereotypes

GenderCARE: A Comprehensive Framework

• GenderCARE consists of four key components

Criteria	Winoqueer [16]	BOLD [13]	StereoSet [29] Ours
Inclusivity				
Diversity				
Explainability		\checkmark		
Objectivity				
Robustness		\checkmark		
Realisticity	\checkmark	\checkmark		\checkmark

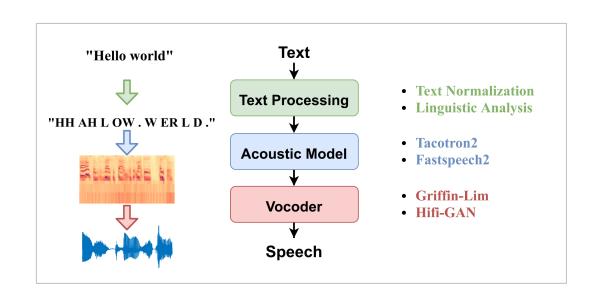
Bias-F	Pair Ratio	o (↓)	Te	oxicity (↓)				Reg	ard			
oup1	Group2	Group3	Group1	Group2	Group3		Positi	ve (†)			Negati	ve (↓)	
					· · ·	Group1	Group2	Group3	$\sigma\left(\downarrow\right)$	Group1	Group2	Group3	$\sigma\left(\downarrow\right)$
.56	0.49	0.43	0.06	0.06	0.09	0.25	0.28	0.29	0.02	0.33	0.28	0.30	0.02
.45	0.57	0.46	0.08	0.07	0.12	0.25	0.23	0.21	0.02	0.36	0.38	0.40	0.02
.48	0.49	0.46	0.03	0.02	0.02	0.43	0.51	0.46	0.03	0.15	0.13	0.17	0.02
.42	0.54	0.49	0.02	0.02	0.03	0.58	0.61	0.50	0.05	0.15	0.13	0.20	0.03
.56	0.55	0.43	0.01	0.01	0.02	0.18	0.14	0.16	0.02	0.35	0.32	0.35	0.01
.52	0.48	0.44	0.01	0.01	0.01	0.12	0.10	0.10	0.01	0.35	0.28	0.27	0.04
.53	0.56	0.45	0.03	0.02	0.02	0.51	0.50	0.47	0.02	0.16	0.18	0.21	0.02
.49	0.57	0.44	0.04	0.02	0.02	0.34	0.31	0.30	0.01	0.15	0.13	0.15	0.01
.42	0.51	0.39	0.03	0.03	0.05	0.43	0.40	0.44	0.02	0.24	0.25	0.28	0.02
.39	0.53	0.37	0.03	0.03	0.07	0.36	0.40	0.37	0.02	0.31	0.26	0.31	0.02
.46	0.46	0.44	0.01	0.01	0.02	0.46	0.50	0.47	0.02	0.17	0.12	0.15	0.02
.42	0.42	0.40	0.01	0.01	0.01	0.60	0.63	0.61	0.01	0.13	0.09	0.12	0.02
.55	0.57	0.43	0.10	0.11	0.12	0.20	0.24	0.23	0.02	0.42	0.34	0.35	0.04
.55	0.56	0.44	0.08	0.08	0.12	0.19	0.22	0.23	0.02	0.45	0.38	0.40	0.03
0 4 4 4 5 5 4 4 5 4 4 5	bup1 56 15 18 18 12 55 56 52 55 56 57 55 56 57 57 57 57 57 57 57 57 57 57	Broup1 Group2 56 0.49 0.57 0.57 48 0.49 12 0.54 55 0.48 33 0.56 49 0.57 42 0.51 39 0.53 42 0.51 42 0.42 0.53 0.53 442 0.42	Image Groups Groups 55 0.47 0.43 55 0.57 0.46 18 0.44 0.46 20 0.44 0.46 56 0.55 0.43 0.55 0.48 0.44 18 0.44 0.46 16 0.55 0.43 0.57 0.44 0.44 12 0.51 0.39 0.53 0.57 0.44 12 0.42 0.41 12 0.42 0.44 12 0.42 0.44 12 0.42 0.44 12 0.42 0.44 12 0.42 0.44	Instruction Instruction Instruction instruction Group2 Group3 Group1 instruction 0.57 0.46 0.08 instruction 0.49 0.42 0.03 instruction 0.44 0.01 0.01 instruction 0.55 0.43 0.01 instruction 0.45 0.03 0.04 instruction 0.57 0.44 0.04 instruction 0.51 0.39 0.03 instruction 0.53 0.37 0.03 instruction 0.46 0.44 0.01 instruction 0.46 0.44 0.01 instruction 0.53 0.37 0.03 instruction 0.46 0.44 0.01 instruction 0.46 0.44 0.01 instruction 0.01 0.01 0.01	Image Groups Groups Groups Groups 65 0.47 0.43 0.06 0.06 55 0.57 0.44 0.08 0.07 18 0.49 0.44 0.03 0.02 22 0.54 0.49 0.02 0.02 56 0.55 0.43 0.01 0.01 30 0.50 0.43 0.04 0.02 19 0.57 0.44 0.04 0.02 19 0.57 0.44 0.04 0.02 19 0.53 0.37 0.33 0.39 19 0.53 0.37 0.33 0.39 10 0.33 0.37 0.33 0.39 10 0.33 0.37 0.33 0.39 16 0.44 0.44 0.01 0.01 12 0.42 0.40 0.01 0.01	Image Groups Groups Groups Groups Groups Groups 15 0.47 0.43 0.06 0.06 0.09 0.37 0.12 15 0.57 0.43 0.06 0.06 0.09 0.02 0.03 18 0.44 0.08 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.01 0.01 0.02 0.02 0.03 0.05 0.05 0.04 0.01 0.01 0.02 0.02 0.03 0.02 0.02 0.03 0.07 0.02 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

	Bias	Pair Ratio	· (↓)	Т	`oxicity (↓))				Rega	ard			
Models	Group1	Group2	Group3	Group1	Group2	Group3		Positiv	/e (↑)			Negati	ve (↓)	
							Group1	Group2	Group3	$\sigma\left(\downarrow ight)$	Group1	Group2	Group3	$\sigma\left(\downarrow ight)$
Alpaca_7B Alpaca_13B													0.08 (-0.22) 0.15 (-0.25)	
Vicuna_7B Vicuna_13B													0.13 (-0.04) 0.12 (-0.08)	
Llama_7B Llama_13B													0.14 (-0.21) 0.18 (-0.09)	
Orca_7B Orca_13B													0.20 (-0.01) 0.10 (-0.05)	
SBeluga_7B SBeluga_13B													0.04 (-0.24) 0.10 (-0.21)	
Llama2_7B Llama2_13B													0.09 (-0.06) 0.11 (-0.01)	
Platy2_7B Platy2_13B													0.09 (-0.26)	

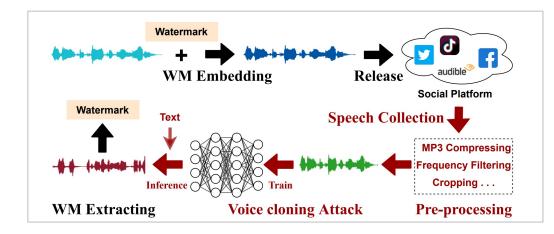
More Results of Reducing Gender Bias

• Reducing gender bias for LLMs by our debiasing strategy, assessed across three existing bias benchmarks.

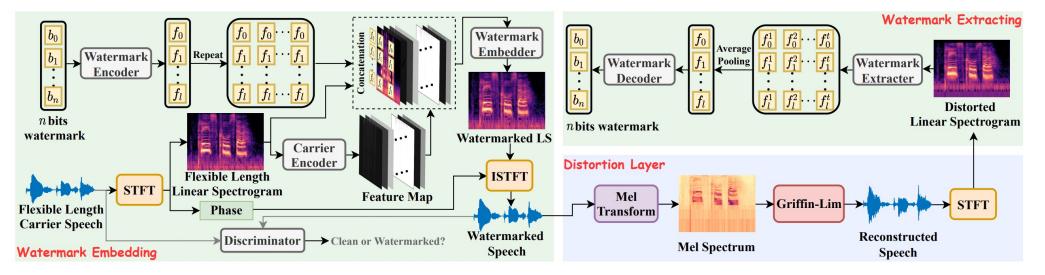
• Application of GenderPair on other three different LLM architectures, besides the llama architecture.

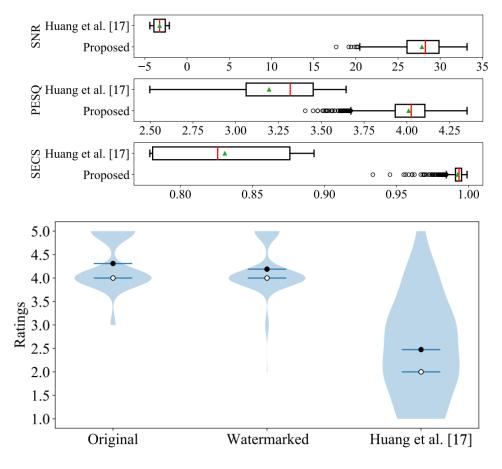

	Wir	noqueer (Pe	erplexity)			BOLD (StereoSet (Perplexity)					
Models	Stereo	Stereo	Δ (↑)		Positive			Negative		Stereo	Stereo	Δ (↑)
	More	Less	- (1)	Actors	Actresses	$\sigma\left(\downarrow ight)$	Actors	Actresses	$\sigma\left(\downarrow ight)$	More	Less	- (1)
Alpaca_7B	0.34	0.66	-0.32 (<u>11.3%</u>)	0.48	0.55	0.04(174.1%)	0.05	0.04	0.01 (↓51.3%)	0.26	0.12	0.14(<u>18.2</u> %
Alpaca_13B	0.38	0.62	-0.24 (<u>120.4</u> %)	0.42	0.41	0.01 (166.7%)	0.06	0.05	0.01 (147.6%)	0.30	0.13	0.17 (160.6%
Vicuna_7B	0.31	0.69	-0.32 (<u></u> 1.8%)	0.49	0.56	0.04(142.9%)	0.06	0.04	0.01 (142.9%)	0.26	0.14	0.12 (160.35
Vicuna_13B	0.56	0.44	0.12 (^{147.3%})	0.51	0.57	0.03 (156.1%)	0.06	0.05	0.01 (\44.4%)	0.28	0.13	0.15 ([†] 11.29
Llama_7B	0.38	0.62	-0.24 (^47.5%)	0.55	0.63	0.04(\33.3%)	0.03	0.03	0.00 (142.3%)	0.27	0.14	0.13(<u></u> 35.19
Llama_13B	0.74	0.26	0.48 (^{†53.2%)}	0.32	0.29	0.02 (142.5%)	0.04	0.04	0.00 (\33.4%)	0.28	0.13	0.15 (<mark>^59.3</mark> 9
Orca_7B	0.49	0.50	-0.01 (<u></u> 196.7%)	0.85	0.87	0.01 (153.7%)	0.01	0.01	0.00 (148.8%)	0.27	0.14	0.13 (^27.9
Orca_13B	0.42	0.58	-0.16 (^{71.2%})	0.88	0.89	0.01 (154.8%)	0.02	0.01	0.01 (\43.8%)	0.26	0.16	0.10 (^25.25
SBeluga_7B	0.39	0.61	-0.22 (<u></u> 63.7%)	0.86	0.88	0.01 (126.4%)	0.01	0.01	0.00 (129.9%)	0.26	0.18	0.08 (^{16.4}
SBeluga_13B	0.47	0.53	-0.06 (191.3%)	0.85	0.88	0.02 (132.9%)	0.01	0.02	0.01 (127.8%)	0.27	0.13	0.14 (^32.6 5
Llama2_7B	0.37	0.63	-0.26 (<u></u> 33.2%)	0.77	0.72	0.03 (137.5%)	0.08	0.07	0.01 (\33.3%)	0.28	0.13	0.15 (^59.1 5
Llama2_13B	0.40	0.60	-0.20 (<u></u> 35.4%)	0.82	0.84	0.01 (125.5%)	0.03	0.05	0.01 (\16.4%)	0.27	0.14	0.13 (<u></u> †35.0
Platy2_7B	0.37	0.63	-0.26 (<u></u> 30.8%)	0.54	0.59	0.03 (155.8%)	0.03	0.04	0.01 (↓52.5%)	0.28	0.13	0.15 (<u></u> 23.6
Platy2_13B	0.40	0.60	-0.20 (<u>139.9%</u>)	0.67	0.64	0.02 (133.3%)	0.05	0.07	0.01 (123.1%)	0.29	0.14	0.15 (122.7)

	Bias-	Pair Rati	o (↓)	T	oxicity (↓)				Reg	gard			
Models	Group1	Group?	Group3	Group1	Group2	Group3		Positiv	/e (↑)			Negat	ive (↓)	
	Groupr	Groupz	Groups	Groupi	010492	Groups	Group1	Group2	Group3	$\sigma\left(\downarrow ight)$	Group1	Group	2 Group3	$\sigma\left(\downarrow ight)$
Falcon Instruct_7B	0.35	0.39	0.38	<u>0.09</u>	<u>0.05</u>	0.05	0.37	0.31	0.38	<u>0.03</u>	0.24	0.21	0.20	0.02
Mistral Instruct_7B	<u>0.56</u>	<u>0.47</u>	<u>0.45</u>	0.04	<u>0.05</u>	0.05	0.35	0.40	0.33	<u>0.03</u>	<u>0.27</u>	<u>0.22</u>	<u>0.27</u>	0.03
Baichuan2 Chat_7B	0.36	0.42	0.43	0.02	0.01	<u>0.06</u>	<u>0.29</u>	<u>0.28</u>	<u>0.24</u>	0.02	0.16	0.15	0.25	<u>0.04</u>

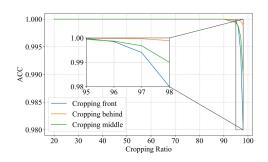

Text-to-Speech Model

- Generate a speech based on text and the reference audio (timbre)
 - E.g., Using Steve Jobs's voice to say, "I love Huawei!"
- Many individuals enjoy sharing their voice artworks on public platforms




Detecting Voice Cloning Attacks via Timbre Watermarking

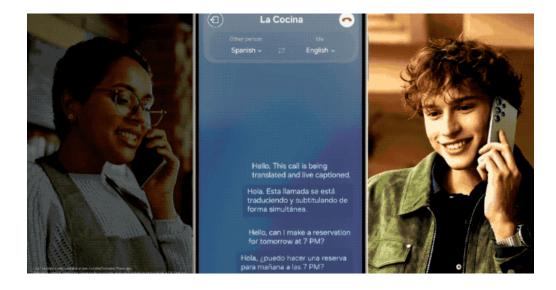
- Common-used processing operations
 - Scale modification
 - Normalization
 - Phase information discarding
 - Waveform reconstruction



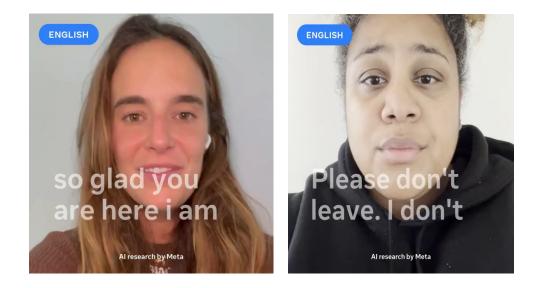
Detecting Voice Cloning Attacks via Timbre Watermarking

Мо	del	Qua	•	ACC↑
Acoustic Model	Vocoder	PESQ↑	SECS↑	ACC
	Hifi-GAN* [40]	1.0578	0.8957	1.0000
Fastspeech2* [8]	Hifi-GAN [40]	1.0712	0.8965	0.9933
	Griffin-Lim [38]	1.1129	0.7034	1.0000
	Hifi-GAN* [40]	1.1143	0.8598	1.0000
Tacotron2* [36]	Hifi-GAN [40]	1.1136	0.8626	0.9988
	Griffin-Lim [38]	1.1971	0.7125	1.0000
VITS*	* [30]	1.0342	0.9085	1.0000

Preprocessing	Parameter		Quality		ACC ↑
Freprocessing	Parameter	SNR†	PESQ ↑	SECS↑	ACC
Deserveting	16 kHz	34.8115	4.4967	1.0000	1.0000
Resampling	8 kHz	17.1642	4.4961	0.9025	0.9940
	20%	1.9382	4.4918	0.9575	1.0000
American de Castina	40%	4.4368	4.4973	0.9596	1.0000
Amplitude Scaling	60%	7.9589	4.4986	0.9772	1.0000
	80%	13.9790	4.4991	0.9942	1.0000
	8 kbps	9.0414	2.2115	0.7565	0.9186
	16 kbps	13.1554	3.3484	0.9552	0.9992
	24 kbps	15.2631	3.9259	0.9888	0.9999
MP3 Compression	32 kbps	17.2272	4.0695	0.9962	1.0000
MP5 Compression	40 kbps	18.7795	4.1902	0.9975	1.0000
	48 kbps	20.8746	4.3122	0.9986	1.0000
	56 kbps	22.8885	4.3813	0.9991	1.0000
	64 kbps	23.9958	4.4136	0.9992	1.0000
Recount	8 bps	22.9103	3.1708	0.9757	0.9995
	5 Samples	14.8666	3.6664	0.9459	1.0000
Median Filtering	15 Samples	8.9079	2.5726	0.7875	0.9933
Median Filtering	25 Samples	5.3999	2.1427	0.7338	0.9806
	35 Samples	3.2550	1.8721	0.6861	0.9402
Low Pass Filtering	2000 Hz	12.8558	3.8824	0.7280	0.9030
High Pass Filtering	500 Hz	3.7635	3.7919	0.6551	1.0000
	20 dB	20.0002	3.1287	0.9104	0.9962
	25 dB	24.9989	3.5182	0.9670	0.9995
Gaussian Noise	30 dB	29.9981	3.8662	0.9919	1.0000
	35 dB	34.9941	4.1277	0.9981	1.0000
	40 dB	39.9888	4.3038	0.9994	1.0000

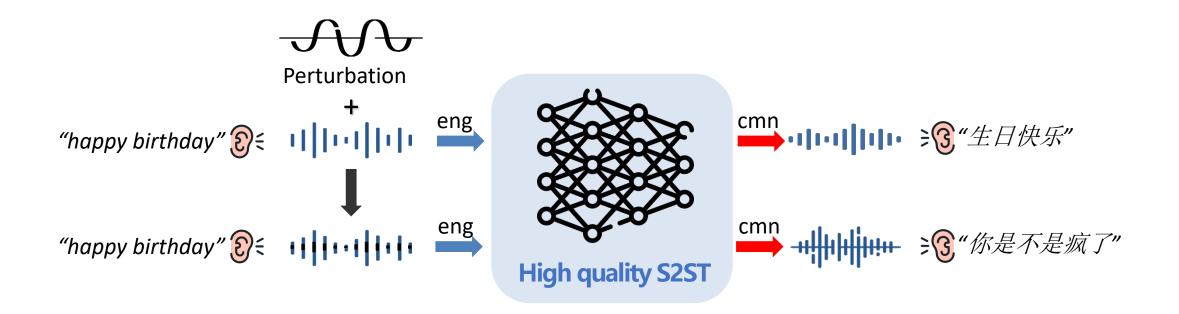

Superior Robustness

High Fidelity

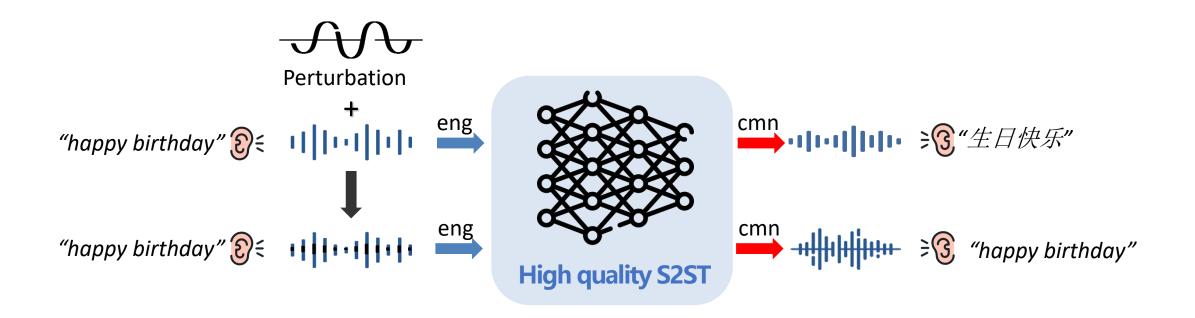

Link to more demos

Speech to Speech Translation Model

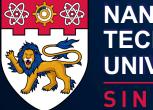
 Advanced S2ST technology has been widely commercialized across different industries


Live Translation Built in Galaxy S24

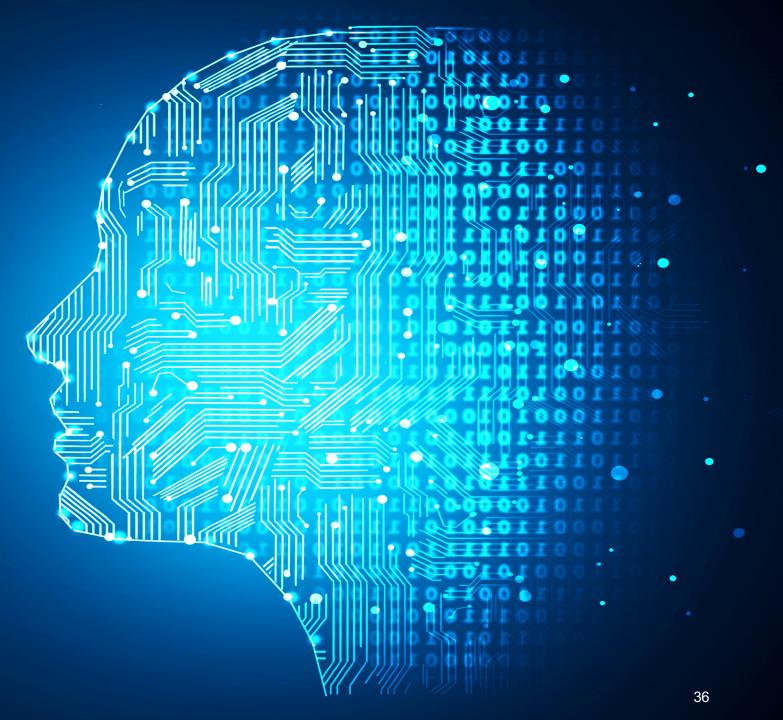
Open-sourced Seamless-Expressive from Meta


Potential Threats to S2ST Model

• Translate to target sentence (e.g., dirty words, meaningless sentence)


Potential Threats to S2ST Model

Cannot translate to target language



Thank You!

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

